If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+12a=15
We move all terms to the left:
a^2+12a-(15)=0
a = 1; b = 12; c = -15;
Δ = b2-4ac
Δ = 122-4·1·(-15)
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{51}}{2*1}=\frac{-12-2\sqrt{51}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{51}}{2*1}=\frac{-12+2\sqrt{51}}{2} $
| x+(x-48)=220 | | -7+(16p+8)^1/3=-1 | | 190=(9c)+10 | | c=(213•7)+35 | | 1094=(2c)+4 | | 1,094=(2c)+4 | | 287=(4c)+19 | | 7-4x/9=3 | | 287=(c•4)+19 | | n/5=31/5 | | 10x2+x-3=0 | | 8x+5/4=35 | | X3-9x2+18x=0 | | n-5=131/5 | | 5x2-32x-21=0 | | 7•2n=18 | | -2=÷m16 | | 3(k-60=15 | | 2x-3/x+2=0.333 | | 4x+2=10,x= | | A(x)=150x+2x^2 | | 6x2+37x+56=0 | | -2(x-1)=5+1 | | 4^2x+7=8^x+2 | | (x+8)+(3x+3)=(5x-6) | | (x+11)+(3x+11)=(5x+10) | | (x+11)+(3x+11)=(5x+10 | | (x+7)+(3x+1)=(5x-9) | | (8x+7)+(4x+12)=(13x+10) | | (3x+6)+(2x+20)=(6x+7) | | 6x+6-5x+10=20 | | |x+6|-3=13 |